PHEME

Computing Veracity Across Media, Languages, and Social Networks
Short Description: 

Combination of big data analytics with advanced linguistic and visual methods. The results will be suitable for direct application in medical information systems and digital journalism.

Full Description: 

Social networks are rife with lies and deception, half-truths and facts. But irrespective of a meme’s truthfulness, the rapid spread of such information through social networks and other online media can have immediate and far-reaching consequences. In such cases, large amounts of user-generated content need to be analysed quickly, yet it is not currently possible to carry out such complex analyses in real time.
Social media poses three major computational challenges, dubbed by Gartner the 3Vs of big data: volume,
velocity, and variety. Content analytics methods have faced additional difficulties, arising from the short, noisy,
and strongly contextualised nature of social media. In order to address the 3Vs of social media, new language
technologies have emerged, e.g. using locality sensitive hashing to detect breaking news stories from media
streams (volume), predicting stock market movements from microblog sentiment (velocity), and recommending
blogs and news articles based on user content (variety).
PHEME will focus on a fourth crucial, but hitherto largely unstudied, challenge: veracity. It will model, identify, and
verify phemes (internet memes with added truthfulness or deception), as they spread across media, languages,
and social networks.
PHEME will achieve this by developing novel cross-disciplinary social semantic methods, combining document
semantics, a priori large-scale world knowledge (e.g. Linked Open Data) and a posteriori knowledge and context
from social networks, cross-media links and spatio-temporal metadata. Key novel contributions are dealing with
multiple truths, reasoning about rumour and the temporal validity of facts, and building longitudinal models of
users, influence, and trust.
Results will be validated in two high-profile case studies: healthcare and digital journalism. The techniques will
be generic with many business applications, e.g. brand and reputation management, customer relationship
management, semantic search and knowledge management. In addition to its high commercial relevance,
PHEME will also benefit society and citizens by enabling government organisations to keep track of and react to
rumours spreading online

Funding Program: 
shot_chars: 
185chars