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Abstract: As the global population is expected to reach 10 billion by 2050, the agricultural sector faces
the challenge of achieving an increase of 60% in food production without using much more land.
This paper explores the potential of Artificial Intelligence (AI) to bridge this “land gap” and mitigate
the environmental implications of agricultural land use. Typically, the problem with using AI in such
agricultural sectors is the need for more specific infrastructure to enable developers to design AI and
ML engineers to deploy these AIs. It is, therefore, essential to develop dedicated infrastructures to
apply AI models that optimize resource extraction in the agricultural sector. This article presents an
infrastructure for the execution and development of AI-based models using open-source technology,
and this infrastructure has been optimized and tuned for agricultural environments. By embracing
the MLOps culture, the automation of AI model development processes is promoted, ensuring
efficient workflows, fostering collaboration among multidisciplinary teams, and promoting the rapid
deployment of AI-driven solutions adaptable to changing field conditions. The proposed architecture
integrates state-of-the-art tools to cover the entire AI model lifecycle, enabling efficient workflows for
data scientists and ML engineers. Considering the nature of the agricultural field, it also supports
diverse IoT protocols, ensuring communication between sensors and AI models and running multiple
AI models simultaneously, optimizing hardware resource utilization. Surveys specifically designed
and conducted for this paper with professionals related to AI show promising results. These findings
demonstrate that the proposed architecture helps close the gap between data scientists and ML
engineers, easing the collaboration between them and simplifying their work through the whole AI
model lifecycle.

Keywords: Agriculture; Artificial Intelligence; Machine Learning; Deep Learning; Internet of Things;
DevOps; MLOps

1. Introduction

According to a United Nations (UN) report (https://www.un.org/development/desa/
en/news/population/world-population-prospects-2019.html, accessed on 12 December
2023), the global population is expected to grow to almost 10 billion people by 2050.
Considering this estimation, the World Resources Institute (WRI) calculates that, to keep
up with this demand, food production will have to be increased by at least 60% in the same
period [1]. However, to cope with that need, the agricultural land that would be needed
exceeds by far the land available as of today. This is a concept referred to by the WRI as
land gap, and it has towering climate implications: using that much land for agricultural
purposes would destroy vital ecosystems, which in turn would contribute even more to
climate change, with food production being nowadays already responsible for almost 25%
of global greenhouse gas emissions [1].

In recent years, many lines of research have started to explore the possibility of solving
the land gap problem via the application of cutting-edge technologies, making agriculture
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itself evolve toward a new era, which has already been called, amongst others, smart
farming, precision agriculture, or Agriculture 4.0 [2]. This field of study has gained a lot
of momentum in the last few years since it is considered one of the key contributors
toward the UN’s Sustainable Development Goals (https://sdgs.un.org/goals, accessed on
12 December 2023) introduced in 2015 in the 2030 Agenda for Sustainable Development
(https://sdgs.un.org/2030agenda, accessed on 12 December 2023).

Undoubtedly, Artificial Intelligence (AI) is a pivotal technology in the realm of smart
agriculture, as noted in the works [3,4]. Its integration has revolutionized this field, opening
up new avenues to enhance both the quantity and quality of crop yields, as well as to
automate processes. This paves the way for intelligent, autonomous systems that can
learn and make informed decisions. For instance, the study in [5] highlights how AI can
reduce chemical use by up to 90%, showcasing its efficacy in optimizing agricultural pro-
duction processes, leading to more efficient farming, increased productivity, and reduced
environmental impact.

In addition, Shankar et al. (2020) [6] present insights on how AI-driven strategies can
refine crop protection, bolstering sustainable agriculture. This research demonstrates the
significant improvements AI can bring to crop management strategies. Further exploring
AI’s role in environmentally conscious agriculture, the authors in [7] review precision
chemical weed management strategies and propose a new CNN-based modular spot
sprayer. This innovation is a testament to how AI can be applied to develop more precise
and efficient weed control solutions, reducing the overall chemical footprint in farming.

Furthermore, the work carried out in [8] delves into how AI can alleviate environ-
mental challenges posed by agriculture. It provides a comprehensive look at how AI can
be implemented for more efficient crop production and monitoring while minimizing
ecological footprints. Complementing these findings, Visentin et al. (2023) [9] investigate
a mixed-autonomous robotic platform for precise weed removal in both intra-row and
inter-row settings. This development underscores the role of AI in precision agriculture,
illustrating how robotic systems can be specialized for tasks like exact weed control, which
helps in reducing chemical herbicide reliance and supports sustainable agriculture.

Additionally, the deployment of collaborative smart robots, as detailed in the work [10],
represents a significant advancement. In this case, a group of robots leverages AI to
optimize harvesting routes, thereby boosting crop collection volumes. This not only
exemplifies the increasing autonomy in agricultural systems but also their efficiency and
ecological responsibility.

The integration of AI in agriculture, as mentioned, seeks not only to enhance produc-
tivity, but also to ensure the welfare and efficiency of both the machinery and the workforce,
emphasizing the potential of AI in aiding human workers rather than substituting them.
Implementing AI in conjunction with UGVs, for example, to assist workers in optimizing
fruit harvesting, or to accurately distribute phytosanitary products, highlights how well
humans and machines can work together. Such synergies not only optimize agricultural
processes but also ensure the protection of the environment and the sustainability of re-
sources. This approach seeks a balance, where technology serves human efforts rather than
replacing them, ensuring that the insights and expertise of human intervention remain an
integral part of the process.

However, this inclusion comes with its own share of challenges to overcome before
starting to consider its extensive adoption within the agricultural domain.

The enormous development and extension of AI in recent years is undeniable [11–13].
It has spread so much that it has become a revolution, being applied in almost every
sector imaginable: embedded finances [14], business value [15], transport management [16],
medicine [17], industry 4.0 [18], and, of course, agriculture [19–21].

Precisely, agriculture is one of the domains where AI is gaining much importance.
The automation of processes through Machine Learning (ML) or Deep Learning (DL)
based models is expected to allow for the substitution of humans by machines (UGVs,
UAVs), to perform repetitive and costly tasks. This, in turn, is expected to increase the
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performance and efficiency of the task at hand. However, the application of AI in production
or operational environments in general, and in the agriculture domain in particular, still
faces many challenges. One of the main open issues in AI right now is not so much the
creation of AI models themselves, but their deployment in production environments, their
maintenance throughout their entire life cycles, and the management of the huge datasets
that are usually involved. Rapid changes in models and data need continuous updates
in production systems. Asset management, including model versions and data, should
be autonomous and optimal as much as possible. The true challenge of AI integration
lies in adapting to increasingly rapid changes, optimizing that integration for real-world
scenarios, and maintaining an organized workflow to implement these measurements.
Right now, there is not a single solution for this, but rather a plethora of tools that AI
practitioners such as data scientists or ML engineers need to master before even getting
to use them, let alone considering their usage in industrial environments. In the current
environment, it is up to the data scientist/ML engineer to study the different tools and
assess which ones are most suitable to build the whole workflow/model life cycle. This
makes the learning curve a steep one and hinders the acceptance of AI in environments
where it creates complete disruption, generating distrust in a technology that is seen as a
black box, such as agriculture.

To address these issues, a new paradigm known as Machine Learning Operations
(MLOps) has emerged. Its objectives are twofold: (1) automating the process of building
ML models and deploying them to production; and (2) maintaining and monitoring these
models throughout their whole life cycle to detect potential issues which could compromise
the AI model’s performance and automate a response [22–24], increasing the efficiency and
scalability, as well as reducing the potential risks. By embracing MLOps culture, developers
unlock the advantages of optimized workflows, automated AI model deployment, and ef-
fective collaboration, leading to increased productivity and robustness, faster development
cycles, and better performance of their AI models.

Therefore, the objective of this paper is to provide a solution for some of the aforemen-
tioned open challenges. We propose an open-source AI architecture based on the MLOps
paradigm to reduce the complexity of developing and deploying AI models in agricultural
contexts. The proposed architecture seeks to improve upon the state-of-the-art MLOps
methods by implementing a functional and tested architecture that is used by several
AI stakeholders. This solution aims to (1) minimize the learning curve associated with
managing AI models without a centralized MLOps platform and (2) promote the accep-
tance of AI in agriculture by presenting an integrating approach to develop and deploy
AI models, store datasets, and even gather data from different sources of information. It
supports state-of-the-art IoT communication protocols such as Message Queuing Telemetry
Transport (MQTT) [25] and Hypertext Transfer Protocol (HTTP) [26].

Hence, the main contributions of this paper are the following:

• An AI architecture using open-source technologies for creating and producing AI
models is presented, covering the whole life cycle of the AI model, from its creation to
its deployment and monitoring.

• The architecture builds a workflow made of state-of-the-art tools that enable data
scientists and ML engineers to work more efficiently and rapidly, solving many
problems in their day-to-day lives.

• The architecture supports the access through different types of IoT protocols, such as
HTTP and MQTT, enabling ease of access and communication with diverse devices.

• The system is able to run different AI models at the same time, making optimal use of
the hardware resources available in the cluster where the platform has been deployed.

The rest of the document is organized as follows. First, in Section 2.1, the related work
is analyzed and presented. Then, the proposed architecture with its different components,
which is the main contribution of this paper, is described in Section 2.2. Insights gathered
from key stakeholders who have already been exposed to the platform are summarized in
Section 3. Finally, the main conclusions are extracted in Section 5.



Agronomy 2024, 14, 259 4 of 26

2. Materials and Methods

This section covers two essential elements of our research. Section 2.1 “Related
Work” presents an in-depth analysis of existing studies, establishing the background and
highlighting potential contributions of our research. Section 2.2 “Proposed Architecture”
outlines our distinctive strategy, describing the technologies and methods applied to
demonstrate both the novelty and practicality of our proposed solution.

2.1. Related Work

The integration of AI and other advanced technologies into agriculture represents a
significant paradigm shift in one of the most essential industries. This transformation is
driven by the convergence of various technological innovations, including ML, computer
vision, Internet of Things (IoT), and big data analytics. Together, these technologies are
reshaping agricultural practices, enabling more efficient resource management, enhancing
productivity, and contributing to sustainability. However, the adoption and implementation
of these technologies present unique challenges and opportunities. This section provides a
review of the current related work in AI and technology integration in agriculture, exploring
key developments, challenges, and future prospects.

2.1.1. Artificial Intelligence in Agriculture

Agriculture, one of the oldest and most vital industries, has been transformed by
the integration of AI. Computer vision systems are now capable of detecting pests and
diseases with remarkable accuracy [27]. Predictive algorithms have been developed to
forecast weather patterns, enabling farmers to make informed decisions [28,29]. However,
the implementation of AI in agriculture is not without challenges. Data variability, lack
of standardized datasets, and resistance in traditional farming communities have slowed
progress [30–34]. Collaborative efforts between AI experts and agronomists are essential to
bridge this gap [35].

In addition to developing algorithms and Artificial Intelligences to increase field
productivity, improving the efficiency of agricultural practices is crucial. This perspective
is vital in addressing climate change and the environmental challenges observed in the last
decade. Therefore, the digitization and application of AI in agricultural settings introduce
new challenges, including data management, the utilization of crop-specific technologies,
and the need for new infrastructure to process these data [36].

Another critical area where Artificial Intelligence is extensively used to mitigate envi-
ronmental implications is in water management, which is one of the most critical factors
in crop cultivation. Intelligent water management, administered precisely and efficiently,
ensures that crops are adequately hydrated to yield the maximum amount of food while
conserving water usage [37]. However, this raises the same dilemma as previously men-
tioned. It necessitates a network of sensors measuring various environmental parameters,
communicating these parameters to an infrastructure for data collection and processing,
ultimately determining the opening of water valves. To address this need, this article pro-
poses a platform enabling interaction with the environment through the use of AI models.

2.1.2. Open-Source Architectures and MLOps

The open-source movement has democratized access to cutting-edge tools, with plat-
forms such as TensorFlow [38] and PyTorch [39] leading the way. This democratization
has led to the emergence of MLOps, a practice that seeks to standardize and automate the
AI model lifecycle [40,41]. In agriculture, MLOps enables rapid deployment of solutions,
adapting to changing field conditions [42]. It also fosters collaboration among multidisci-
plinary teams, ensuring that models are developed and maintained efficiently [43,44].

The field of MLOps, now integral to AI development, has found a significant appli-
cation in agriculture. MLOps are dedicated to streamlining and automating the complete
AI model lifecycle, encompassing development, deployment, and ongoing maintenance.
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In agriculture, this translates to the ability to swiftly deploy AI-based solutions capable of
adapting to ever-changing field conditions.

Efficient model deployment holds immense value in agriculture, where real-time
decision making is paramount for maximizing productivity and resource efficiency. For in-
stance, computer vision algorithms for early disease detection can trigger rapid, precise
responses, potentially averting significant crop losses [45].

Some studies have concentrated on the MLOps paradigm from a theoretical point of
view [46], while others have presented various tools which could be applied in an MLOps
platform [40,47]. Additionally, several studies have implemented portions of the overall
solution [48,49]. However, there is a noticeable gap in the MLOps literature, providing a
solution that integrates all these components, offering a first approach for a functional and
tested MLOps architecture.

2.1.3. Smart Agriculture and Agriculture 4.0

Agriculture 4.0 is the next frontier, representing the convergence of digital and phys-
ical technologies in the agricultural sector [50,51]. IoT sensors are now used to monitor
soil moisture and autonomously activate irrigation systems [52,53]. Robotics has found
applications in tasks such as harvesting and weeding [54]. Big data analytics and AI are
being used to optimize resource allocation and increase productivity [55–57]. However,
interoperability between different devices and platforms remains a significant challenge,
requiring further research and standardization [58,59].

In recent years, the concept of Agriculture 4.0, often referred to as “Smart Agriculture”,
has gained substantial attention in the research and industry communities. This transfor-
mative approach harnesses the power of digital technologies to address various challenges
in agriculture. One of the key aspects of Agriculture 4.0 is the utilization of IoT devices and
sensors for real-time monitoring and control of agricultural processes. These devices collect
data on soil conditions, weather patterns, crop health, and equipment status. With the help
of AI algorithms, these data are processed to make informed decisions regarding irrigation,
pest control, and crop management [60,61].

Furthermore, the integration of robotics in agriculture has marked a significant ad-
vancement. Autonomous drones and robotic systems are employed for tasks such as
precision planting, harvesting, and weed control. These technologies not only enhance
the efficiency of operations but also reduce the need for manual labor, addressing labor
shortages in agriculture [62,63]. Moreover, the use of robotics contributes to minimizing
the environmental impact by enabling targeted application of resources [64].

The role of big data analytics cannot be overstated in the context of Agriculture 4.0.
Large volumes of data are generated from various sources, including sensors, satellites,
and machinery. Advanced analytics techniques, such as Machine Learning and data mining,
are applied to extract valuable insights from these data. These insights enable farmers and
agricultural professionals to make data-driven decisions that optimize crop yield, resource
utilization, and sustainability practices [55–57].

2.1.4. User Experience in Agricultural Systems

The integration of technology into agriculture must be user-centric. Systems must
be adapted to work in remote areas with limited connectivity [65,66]. Interfaces have to
be designed to be used without requiring deep technical knowledge [67]. Training and
support are crucial components to ensure that technological solutions are adopted and
used effectively in the field [68]. Moreover, cultural and socioeconomic factors must be
considered to create solutions that are truly aligned with the farmers needs [41,45].

Effective training and ongoing support are indispensable components of successful
technology adoption in agriculture. Farmers and agricultural workers need proper training
to harness the full potential of technology-enabled solutions [68]. This includes not only
understanding how to operate the technology but also interpreting the data it provides.



Agronomy 2024, 14, 259 6 of 26

Support mechanisms, whether through local agricultural extension services or remote tech
support, should be readily available to address issues and provide guidance as needed.

Agricultural technology solutions should be designed with a deep understanding of
the cultural and socioeconomic factors that influence farming practices. Different regions
and communities have unique needs and preferences, which should be taken into account
during the development of agricultural systems [45]. Solutions that align with local customs
and preferences are more likely to be embraced by the farming community.

2.1.5. Recent Developments and Future Directions

Recent developments in AI and technology have opened new paths for innovation in
agriculture. Advanced weather prediction models are providing more accurate forecasts,
allowing for better planning and resource management [29]. New methodologies are being
developed to address data variability and standardization challenges [31]. Community
engagement strategies are being explored to overcome resistance in traditional farming
regions [34]. Collaborative AI development is fostering a more inclusive and efficient
approach to technological innovation [44].

Edge computing, an emerging paradigm in agriculture, holds significant promise for
enhancing real-time data processing and decision making at the farm level. By deploying
edge devices equipped with AI capabilities, such as field-based sensors and edge servers,
farmers can analyze data directly at its source. This approach reduces latency and allows
for quicker responses to changing environmental conditions [61]. Edge computing is
particularly beneficial for applications such as precision irrigation, where timely data
insights can optimize water usage and crop health. As edge computing technologies
continue to mature, their integration into agricultural systems is expected to grow, further
improving farm efficiency and sustainability.

In light of increasing climate variability and extreme weather events, resilience in
agriculture has become a paramount concern. AI-driven solutions are aiding farmers in
adapting to these challenges. Machine Learning models can analyze historical weather data
and predict potential climate-related risks, enabling farmers to implement mitigation strate-
gies and protect their crops [60]. Furthermore, AI-powered drones equipped with thermal
imaging cameras can identify stress in crops caused by heatwaves or water shortages,
allowing for targeted interventions [63]. Building climate-resilient agricultural systems
through AI technologies is vital for ensuring food security in the face of a changing climate.

The global agricultural community is increasingly recognizing the importance of
collaboration and data sharing in addressing common challenges. Initiatives such as
the Agricultural Model Intercomparison and Improvement Project (AgMIP) are bringing
together researchers, farmers, and policymakers to share data and develop models that
enhance agricultural sustainability [32]. AI plays a pivotal role in integrating diverse
datasets and facilitating collaborative research efforts. Shared data resources, including
crop performance data, weather data, and pest and disease monitoring data, empower
stakeholders to make informed decisions and collectively work towards more resilient and
sustainable agricultural practices.

2.1.6. Summary

The landscape of AI in agriculture is rich and diverse, with notable developments
in technology and user-centered approaches. As the industry advances towards the so-
called agriculture 4.0, a comprehensive approach is essential, considering both technical
capabilities and human needs. Open-source architectures, MLOps, smart agriculture
technologies, and user experience design are key components of this evolving landscape.
This article seeks to address this balance, offering the first open-source AI architecture that
presents an integrated approach to cover the whole lifecycle of AI models. It facilitates
the collaboration of data scientists and ML engineers and provides support for some
of the most widely known IoT protocols, hence proving its differential value for the
agricultural domain.
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2.2. Proposed Architecture

In response to the challenges faced by the agriculture industry to meet the growing
global demand for food production while ensuring sustainability and the limitations of
available agricultural land, innovative technological solutions have become imperative.
This section proposes an architecture that aims to address these challenges by integrating AI
in the agricultural landscape. By leveraging open-source technologies and embracing the
principles of MLOps, the proposed architecture offers a comprehensive framework to ad-
dress the complexities associated with the entire lifecycle of AI models, from development
to deployment and maintenance.

This section is organized as follows: Section 2.2.1 introduces the fundamental concepts
of AI workflows, examines the professional profiles involved, and details the MLOps
workflow. Section 2.2.2 presents the architecture proposed in this paper and the technolo-
gies employed to shape it. Finally, Sections 2.2.3–2.2.5 delve into each technology used in
designing the proposed MLOps architecture.

2.2.1. Fundamentals

To create a new AI model, developers must follow some well-known sequential steps:
preprocess and adapt the input data; design, train, and test the model; and finally, deploy
the model into a production environment. Even though one could consider that the hardest
parts are the first two steps (which usually conform the so-called development stage), it
should be noted that, indeed, the last one is crucial, as it implies transitioning the model
from a prototype to a real-world product (e.g., production stage).

When starting to experiment with AI models, developers normally use local environ-
ments in their local machines. While this method may perform sufficiently well for small,
local projects, it starts to be impractical when the models, data, and projects grow.

Specifically, some of the main limitations of using local environments are

• Data management: the input dataset for an AI model is stored on the same local
machine where the AI model is trained and tested. This makes it impossible to update
the dataset in the case of new data being incorporated, as the memory consumption of
that local machine would render the infrastructure inoperable.

• AI model versioning: tools that allow for the versioning of different trained models
are not used, since this process normally involves exchanging considerable amounts
of data.

• Teamwork: if a team is working on a local machine, the design of pipelines can only
be performed and manipulated by one person.

• Production deployment: This process often involves additional considerations such as
scalability, reliability, security, and monitoring. Furthermore, production deployment
can hinder problem solving in a production environment, posing challenges when
addressing errors efficiently and promptly.

Therefore, in more complex production environments, additional techniques may
become useful to simplify the management, deployment, and monitoring of software de-
velopments in a real-world setting. These techniques aim to ensure that the deployment
process is efficient and robust, capable of handling the complexities and demands of a
live environment. The term used for this culture or set of good practices is Development
Operations or DevOps, which combines software architecture with software development,
designing software environments that optimize the deployment of applications in high-
stress environments. Additionally, in more places, security is taking an important place in
DevOps culture, extending to the DevSecOps paradigm [69]. This shows a growing recog-
nition of the key role of security in the development and operations processes, integrating
it into every step of the software lifecycle to ensure more resilient and safer applications.

When applied to ML, this paradigm is known as MLOps, primarily concentrating on
the deployment of AI models in production.
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MLOps exhibits certain differences compared to the original DevOps paradigm, mainly
stemming from the unique requirements of AI models, such as model and data versioning
and management. These requirements include the need for training with large amounts
of data and often require periodic retraining due to widely known issues, such as data
drift. Consequently, methodologies and tools that confer agility to the platform must be
employed to effectively support these requirements.

With the increase in the complexity of the models to develop, the activities that
developers must carry out in each of the stages mentioned before (development and
production) also increase in complexity.

In the development stage, developers iterate on several model hyperparameters, eval-
uate different algorithms, and improve the dataset quality. The result of this stage includes

• Training Code: Normally, a Jupyter Notebook [70] is used for experimentations, so it
contains the code used for model training, hyperparameter tuning, and evaluation.

• Trained Model with Artifacts and Versioning: The developers produce a trained
model along with its associated artifacts. These artifacts are versioned to ensure
reproducibility and allow for easy tracking of model changes.

• Stored and versioned Dataset: The dataset used for training is also versioned to
maintain a record of its evolution.

In the production stage, developers focus on turning the Jupyter notebook into a
production-ready system using ML pipelines, which bring several advantages, such as
versioning, containerization, and collaboration. The steps involved in this stage are

• ML Pipelines: These pipelines automate key tasks, including data preprocessing,
feature engineering, model (re)training, and evaluation. ML pipelines improve code
modularity, facilitate version control, and enable collaboration among team members.

• Continuous Integration and Delivery (CI/CD) Pipeline: This pipeline includes steps
such as formatting checks, execution of unit tests, and documentation verification.
CI/CD ensures code quality, detects errors early, and allows for rapid iteration and de-
ployment.

• Containerization and Deployment: In this step, the model, its dependencies, and the
ML pipeline are encapsulated into a container, ensuring consistency across different
environments. The containerized model is then deployed in the production infrastruc-
ture, ready to serve predictions.

Considering the stages in which the AI generic workflow is divided and the complexity
that each of them entails two specialized roles come about: data scientist and ML engineer.

• A Data scientist is responsible for gathering and preprocessing data, exploring and
analyzing datasets, developing and training ML models, and evaluating their perfor-
mance. Data scientists take the lead in the model development stage, experimenting
with different algorithms, hyperparameters, and dataset improvements.

• An ML engineer specializes in implementing and operationalizing ML models in
production environments. They bridge the gap between data science and software en-
gineering, focusing on deploying, scaling, and maintaining ML systems. ML engineers
work on developing robust ML pipelines, optimizing model performance, designing
scalable architectures, and ensuring the reliability and scalability of production sys-
tems. They define formatting checks, unit tests, and documentation requirements to
maintain code quality and ensure successful deployment.

Although they have differentiated tasks, collaboration between data scientists and
ML engineers is a key part of an AI model’s lifecycle. In terms of knowledge sharing, data
scientists and ML engineers must regularly communicate and exchange insights, challenges,
and discoveries.

In production stages, ML engineers collaborate with data scientists to deploy the ML
pipelines in the production infrastructure. They containerize the model and its depen-
dencies for easy deployment and scalability. Both roles need to work closely to establish
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monitoring mechanisms for the deployed model, collecting real-time performance data
and iterating on the model or making necessary updates based on the feedback.

The challenge of collaborative work arises from the significant divergence in the
technologies utilized by these two roles. The environments and procedural steps followed
by each role exhibit notable disparities. This dichotomy often leads to data scientists and
ML engineers operating in separate spheres, thereby sharing tools with limited efficiency
(Figure 1). Hence, the objective of this endeavor is to create a framework based on an
open-source architecture, capable of identifying synergies between these distinct roles.
By fostering a more cohesive and collaborative approach, this framework aims to amplify
productivity and performance, enabling seamless teamwork (Figure 2).

Figure 1. Isolated working method for data scientists and ML engineers.

Figure 2. Solution proposed in this paper.

The proposed platform’s high-level architecture, as depicted in Figure 3, highlights
three key pipelines: a data management pipeline, a model development pipeline, and a
model deployment in production pipeline. This design ensures a comprehensive framework
that seamlessly integrates these essential aspects of AI model development and facilitates
efficient collaboration between different AI stakeholders.

Data Management is a pivotal process responsible for the comprehensive handling of
raw data, from its acquisition to its transformation into a standardized format. This process
is composed of several distinct submodules, each with its specialized functions:
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• Data Analysis Submodule: This module is tasked with assessing and integrating new
data into the existing dataset. It maintains a connection with the logs from the Train,
Test, and Fine-tuning Model submodule, offering insights into training performance
and facilitating potential adjustments to the dataset format. As an example, Great
Expectations tool [71] is an open-source Python-based library to ensure the reliability
of data by asserting certain “expectations” or quality assessments on datasets.

• Data Versioning Submodule: Through meticulous documentation, areas for dataset
improvement can be identified and the introduction of new dataset versions is reg-
istered, ensuring the maintenance of a dynamic dataset. As can be seen in the pre-
vious figure, DVC [72] is another open-source tool designed for versioning datasets,
model weights, and intermediate files, enabling reproducibility and efficient data
pipeline tracking.

• Data Storage Submodule: A plethora of technologies is available for data storage,
such as MinIO, Amazon S3, PostgreSQL, etc. Notably, this submodule interacts directly
with the Data Preprocessing submodule within the ML pipeline.

Versioning Data
(DVC)

Data Analysis
(Great

Expectations)

Data Storage
(DDBB, Object

storage - MinIO, S3)

Train, Test and Fine
Tunning model

Registry model
(MLFlow) Data Preprocessing

Data 
Preprocessing

Best Model in
production

Model 
Monitoring
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Figure 3. Basic concepts MLOps.

The ML pipeline serves as the foundational element in the proposed architecture,
encompassing the programming, training, and testing of the AI model. This pipeline is
structured into three distinct submodules:

• Data Preprocessing: This submodule retrieves data from the database, undergoes
cleaning operations, and restructures them to ensure the model’s optimal training.
It is integral to the ML pipeline as it preprocesses data tailored for a specific AI
model. Furthermore, the output of this submodule is interconnected with the Model
Monitoring submodule in the Production Environment, ensuring the reference data
remains updated.

• Train, Test, and Fine-tuning Model: This submodule ensures that the model’s ac-
curacy, reliability, and performance are aligned with the desired outcomes. If data
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restructuring or modifications are required, a comprehensive Data Review is impera-
tive, needing the invocation of the Data Analysis submodule again.

• Registry Model: This submodule is dedicated to the preservation of the highest-
performing AI models which were trained in the previous submodule. MLFlow tool
could be used as an example to register a trained model [73]. As a model registry tool,
it centralizes model management, tracks versions, and facilitates lifecycle transitions.
The model deemed superior is subsequently deployed in the production environment,
bridging the Registry Model submodule with the Best Model in Production submodule
in the Production Environment pipeline.

To complete the lifecycle of both the AI model and data within a tangible system,
the deployment into the production environment is crucial.

• Data Preprocessing in Production: Upon collection, raw data undergoes preprocess-
ing via the Data Preprocessing submodule. These refined data are then fed to the Model
Monitoring submodule, where its coherence is meticulously analyzed.

• Best Model in production: The processed data from the previous component is then
channeled into the submodule dedicated to model inference.

• Model Monitoring and Alerts: The output data are further integrated into the Model
Monitoring submodule for an in-depth analysis. Should the data received from the
sensors and the model’s output diverge beyond the acceptable variance, the system
triggers an alert, highlighting the potential need for training a novel model.

2.2.2. Technological Implementation

As outlined in the previous section, this study presents a framework detailing the key
functions an MLOps platform should include to overcome limitations commonly found
in sequentially based programs. This section offers a detailed review of open-source tools
that facilitate the effective design and implementation of this platform, particularly for its
use in agriculture.

Open-source technologies offer several key advantages for research and development.
Firstly, they promote transparency, allowing researchers to access and inspect the source
code, ensuring a high level of trust and credibility in the results. Secondly, they foster
collaboration by encouraging a global community of developers to contribute, resulting
in continuous improvement and innovation. Additionally, open-source tools are often
cost-effective, making them accessible to a wider range of researchers and organizations.
Lastly, they provide flexibility and customization options, enabling personalized solutions
to specific research challenges. These benefits collectively enhance the efficiency, reliability,
and impact of research projects, since the only cost associated to the usage of the proposed
architecture would be associated to the underlying hardware infrastructure. For illustrative
purposes, the work presented in here is supported by a server cluster with a total of 180
cores of varied types and 300 GB of RAM memory. Additionally, this cluster is equipped
with two GPUs, specifically Nvidia T4 and A100.

The utilization of this architecture in agricultural settings is justified for several reasons.
First, these systems handle a large volume of inputs and outputs, generated by sensors in
various agricultural tools. Due to this complexity, it is essential to have architectures that
enable agile deployment and deactivation of tools, a function efficiently fulfilled by the
proposed architecture, as will be explained further in the document.

Secondly, when used in agricultural contexts, these systems often rely on the Internet of
Things (IoT) paradigm [74], which normally involves a network of interconnected physical
devices, each equipped with sensors, software, and connectivity options. These features
not only facilitate data exchange but also enable interactions with the environment. In this
context, the primary aim of the architecture is to seamlessly integrate these IoT agents in
agricultural settings with existing production models. To achieve this, the platform uses
well-known IoT protocols, such as MQTT (designed for device-to-device communication)
and HTTP (used for data packet exchange in cloud environments). These protocols also
contribute to the system’s communication redundancy and agility, ensuring that, in the
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event of a channel failure, devices can continue to communicate via alternative routes.
This strategic integration allows data scientists and ML engineers to develop or fine-tune
models more efficiently, as previously outlined in Section 1.

The proposed architecture is built on an on-premise Kubernetes platform, which is
a leading tool for container orchestration. This foundation provides strong stability and
resilience for the included applications. Using Kubernetes’ features allows the platform to
scale, easily deploy applications, automate management, and recover from faults. Kuber-
netes serves as the fundamental building block of this solution, guiding the deployment
and management of application containers. These containers, which host the different
components of our architecture, are light and portable, ensuring consistency across various
deployment environments and simplifying packaging processes. The architecture is illus-
trated in Figure 4 which is composed of DevOps-based tools, such as Kubernetes, MQTT,
CamelK, and state-of-the-art tools which support AI tasks, such as Kubeflow, MLFlow,
and Kserve.

It clarifies the key components and how they interact for maximum efficiency. As a
result, the overall architecture, supported by Kubernetes, is designed to work smoothly
with the open-source tools. This approach aligns with the concept displayed in Figure 3,
with later sections delving into the specific role of each open-source tool within the
MLOps framework.

End User/
Client

HTTP-MQTT
Connector

NFS

Figure 4. Specialized MLOps Architecture for Agricultural Applications.

It is important to note that the code and setup instructions for the previously described
architecture are openly accessible through the official repository of the FlexiGroBots Euro-
pean project [75], which aims to build a platform for intelligent automation of precision
agriculture operations. For public interaction and model inference, a dedicated website
is available at [76]. Moreover, the platform offers a centralized workspace exclusively
for data scientists and ML engineers involved in the FlexiGroBots European project [77].
This exclusive access to this common entrypoint allows for seamless AI model sharing,
development, and collaboration among them. Subsequent subsections will delve deeper
into the three pipelines/workflows previously outlined in earlier sections and depicted in
Figure 3, providing a comprehensive overview of the architecture.

2.2.3. Data Management

The platform described in this document starts with a module called “Data Manage-
ment”. As shown in Figure 3, this module’s scope encompasses the storage, versioning,
and provision of data access.

In the development and deployment of AI models, efficient storage and retrieval of
large datasets and models is crucial. While Kubernetes offers native storage solutions, they
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come with limitations, particularly in terms of flexibility and mobility. To address these
constraints, a specialized tool that enhances storage flexibility has been employed, allowing
for dynamic adjustments as required by the system. To address this, the Kubernetes
Network File System (NFS) Subdir External Provisioner is used. This tool allows for the
creation of volumes by every component in the cluster using an NFS server and makes
storage more flexible by dynamically setting up subdirectories on that server.

In light of this dynamic storage management approach, MinIO is identified as the
ideal open-source tool for handling data and versioning. Known for its high performance,
MinIO is a distributed object storage system designed for handling large amounts of
data and providing fast data access. It offers features such as scalability, fault tolerance,
and specialized performance for object storage tasks. When combined with Kubeflow
(which will be explained in the following subsection), MinIO acts as a robust storage layer
capable of archiving models and datasets. Additionally, MinIO is user-friendly due to its
easy-to-use interface and straightforward setup process, making it easy for users to quickly
implement MinIO for their storage needs.

The MinIO platform addresses the Data Management pipeline by establishing com-
munication with other submodules of the platform via HTTP. Furthermore, it is capable
of storing data using the bucket storage format. In addition, MinIO provides a system for
versioning the buckets used for model training.

2.2.4. ML Pipeline

In order to create the ML pipeline depicted in Figure 3 and leverage Kubernetes [78]
technology as the foundation of the platform, a Kubeflow solution [79] was configured and
deployed. Kubeflow provides a comprehensive suite of tools that enable data scientists and
ML engineers to develop, train, deploy, and monitor ML models effectively. When installing
Kubeflow, Istio [80] is also set up. Istio manages microservices, enhancing security and
directing traffic between tools in the cluster. The adoption of this tool arises from the need
to secure both the inputs and outputs of a system when utilizing open-source technologies,
as illustrated in [81]. Since these tools typically lack a dedicated company to address bugs,
the responsibility falls on the community. This underscores the importance of employing
encrypted and secure systems, such as those facilitated by Istio. Thanks to this service mesh,
we can implement TLS encryption in both external communications to the architecture
and internal communications between the infrastructure’s internal modules, allowing us to
secure both the internal and external connections with the architecture. This ensures smooth
and secure communication between these tools which will be used by data scientists and
ML engineers. By leveraging Kubeflow’s features, users can focus on building robust ML
models while minimizing their involvement in underlying infrastructure complexities.

Kubeflow encompasses various tools and components tailored to different stages of
the ML workflow:

• For data preparation and task orchestration for training, Kubeflow Pipelines [82] offers
a visual interface that facilitates the design and execution of data processing pipelines
or automated model training.

• In terms of experimentation, development, and model training, Kubeflow integrates
with popular ML frameworks such as TensorFlow [83], Pytorch [84], and scikit-
learn [85]. Experiments and developments can be carried out by using its integrated
Jupyter Notebook implementation. Jupyter Notebook is a web-based tool for creating,
sharing, and executing files containing live code, visualizations, and explanatory text.
These Jupyter Notebooks are managed as Docker [86] containers by Kubeflow, easing
their deployment and versioning. Kubeflow provides tools such as Katib [87] for
studying model hyperparameters during training.

• Regarding model serving and deployment, Kubeflow supports the deployment of
models as scalable, production-ready services using Kubernetes [78] serving frame-
works such as Tensorflow Serving [88] or Seldon Core [89] along with KServe [90].



Agronomy 2024, 14, 259 14 of 26

• As for monitoring and observability, users can monitor model performance, track key
metrics, and set up alerts to ensure the models function as intended.

As shown in Figure 5, a Machine Learning Operations (MLOps) process was set up
using pipelines. This involves various stages of developing, using machine learning models
in a Kubernetes environment, with Kubeflow playing a major role. This specific process is
focused on agricultural applications, where it is used by agronomists.

Download Data

Kubeflow extract
Dataset

Preprocess Data
and 

Data analysis 

Registry Model

Deploy Model

Score
>

Threshold

Kubeflow
Training

HTTP Clients

Figure 5. Kubeflow architecture.

The first step is collecting data from different sources. These data are then prepro-
cessed, which includes cleaning, normalizing, and extracting features to make it ready for
training models.

Following the preprocessing, the Kubeflow toolkit comes into play. Renowned for its
robustness in managing machine learning workflows in Kubernetes, Kubeflow handles the
dataset extraction. This step is pivotal in structuring the data into a format that is optimized
for subsequent machine learning processes. Additionally, after the data processing, data
analysis techniques for anomaly detection are employed, as demonstrated in the work
cited [91], used to ensure the quality of time series-based datasets. This is to ensure the
quality and balance of the data when training the models.

Next, successful models are registered. This involves keeping track of different ver-
sions and their details. Then, these models are deployed and available for practical use,
being, in this step, a key part of the project focused on agricultural engineering.

As a result of this pipeline, several models have been integrated into an easy-to-use
web platform [76] and are also accessible via the Kserve API-REST, allowing users to obtain
information directly.

Agronomists, the main users of this system, interact with the models via a web
interface. They input real-world agricultural data and obtain back predictions for analysis.
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This use of the models shows how they can provide helpful insights for agricultural
engineering.

In conclusion, this MLOps process combines data processing, machine learning,
and workflow management in Kubernetes. It is designed to meet the needs of agronomists,
showing how machine learning can be applied effectively in agriculture.

2.2.5. Production Environment

The architecture discussed in this paper has been designed to support the use of AI
models after their development and deployment. This focus is particularly on key elements
of MLOps, such as sensor interaction with the system and AI model deployment. It is
important to note that sensors usually communicate via the HTTP protocol. Therefore,
these types of data can be easily processed using KServe’s API.

However, in the agricultural setting, sensors often come in arrays that generate large
data streams. These arrays are managed using another protocol called MQTT, which is
designed for real-time applications and is efficient in terms of bandwidth and computational
resources. MQTT uses a publish–subscribe system, ensuring efficient and direct data
exchange between data sources from sensors and AI models.

To facilitate this, the architecture has been adapted to allow KServe to interact with
the MQTT protocol. Two components have been added to the platform, enabling models
hosted on KServe to collect sensor data, perform inferences, and return the results via
MQTT or HTTP, depending on the project’s needs.

To access MQTT messages in the broker, CamelK [92] is used, acting as an HTTP–
MQTT connector. This allows data to be served to KServe modules, which can then redirect
the information via HTTP or MQTT as needed.

Given the nature of the agricultural field, another important challenge was anticipat-
ing and addressing potential communication and data management challenges. To ensure
robust and efficient data handling, the presented architecture incorporates two methodolo-
gies. Firstly, asynchronous-type protocols, such as MQTT, have been used. This strategy
serves a dual purpose: it not only distributes data loads efficiently across communication
channels, but also fortifies the system’s overall resilience. In this protocol, when a broker
receives a topic, it retains the information until a subsequent request is made, assuring
that, upon system connection, the necessary data are dispatched promptly. Additionally,
MQTT provides a unified communication channel for all sensors in the agricultural ecosys-
tem, from drones to autonomous tractors, streamlining automated management processes.
To complement this, as mentioned in Section 2.2.3, a storage system known as a data lake
has been installed. Situated within the same cluster, this storage solution guarantees quick
and direct access to crucial data for all managing components.

3. Results

The following section presents the results and findings obtained from the evaluation
of the platform presented in this paper.

Firstly, we have demonstrated practical applications of the graphical user interface,
specifically designed to facilitate the accessibility of inference systems for individuals with
non-technical backgrounds.

Secondly, a thorough analysis was conducted to assess the performance, usability,
and effectiveness of the proposed architecture. As part of this process, potential users of the
platform have been surveyed regarding the usage of this solution. This evaluation aimed
to validate the platform’s capabilities and its potential impact in addressing the challenges
outlined in Section 1. The results provide valuable insights into the platform’s qualitative
assessments, comparative analysis against existing solutions, scalability and efficiency,
as well as real-world use cases. Additionally, limitations identified during the evaluation
are discussed, and potential future directions for further improvement are suggested.

Finally, the platform’s evaluation of its position within the broader scope of MLOps
must be considered. This is particularly important as MLOps is rapidly evolving and
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becoming more prominent in fields such as agriculture. As a recent research study shows,
MLOps primarily aims to streamline AI operations, improve collaboration, and facilitate
the transition from AI model design to deployment [93]. The survey data, especially from
AI professionals, supports the platform’s ability to effectively bridge the gap between data
scientists and ML engineers, a sentiment also highlighted in [94].

The section is organized as follows: first, Section 3.1 presents the designed GUI for
end-users to interact in a visual and simple way with inference systems. Second, Section 3.2
presents a summary of how different stakeholders can use the proposed architecture;
then, Section 3.3 outlines the contents of the survey conducted, together with the insights
extracted from them.

3.1. Web Platform

In this work, a Graphical User Interface (GUI) (Figure 6) has been developed for indi-
viduals who lack a technical background in making queries to REST APIs or in deploying
AI models. Therefore, in the GUI, four inference models have been deployed for use by
Agricultural Engineers. In addition, this GUI is public [76] via internet.

Figure 6. Web platform with agriculture tools.

In this study, four distinct Artificial Intelligence models have been deployed for specific
agricultural applications. These models represent cutting-edge integrations of AI in the
realm of agriculture, addressing diverse challenges faced by the industry.

Firstly, a model dedicated to the detection of tractors utilizing computer vision tech-
niques has been implemented (top left corner in Figure 6). This model exemplifies the
application of image recognition technologies in agricultural settings, enabling enhanced
monitoring and management of farming equipment.

Secondly, the project’s focus extends to the precise detection of Botrytis, a significant
fungal disease affecting various crops (top right corner in Figure 6). Leveraging AI, a model
that facilitates targeted spraying through advanced detection methods has been developed.
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This approach allows for precise application of fungicides, optimizing resource use and
minimizing environmental impact.

Thirdly, pest management is addressed via the deployment of an AI model capable
of detecting and counting insects in traps (bottom left corner in Figure 6). This model
facilitates the monitoring process, providing accurate, real-time data that is crucial for
effective pest control strategies.

Finally, a model for the detection and quantification of weeds has been introduced
(bottom right corner in Figure 6). This model aids in the identification of unwanted flora,
a key task for crop management and yield optimization. By accurately recognizing and
counting weed species, this model supports more effective and environmentally conscious
weed control practices.

Collectively, these AI models demonstrate the potential of Artificial Intelligence to
revolutionize various aspects of agricultural operations, offering innovative solutions to
longstanding challenges in the field.

3.2. How to Use the Platform

As introduced in Section 2.2, one of the main motivations of the work presented in this
paper is to provide a comprehensive architecture that eases the collaboration between two
clear and distinct professional profiles that have arisen in these last years: data scientists
and ML engineers. Without this architecture, the collaboration between these roles is not
efficient, which results in limited job parallelization. Typically, the ML engineer waits for
the data scientist to finalize the model’s preparation and tuning. Then, the ML engineer
must build the production infrastructure from scratch. If issues arise, adjustments by the
data scientist are followed by reintegration by the ML engineer. These development and
deployment processes are lengthier due to the required coordination between both roles,
as depicted in Figure 7a.

 Develop and Test (Data Scientist)

Upload to Production (ML engineer)

Model Re-train and Re-Upload
(ML engineer and Data scientist)

Time

Actions

(a)

Develop and Test (Data Scientist) 

Prepare and upload Production
(ML engineer)

Test and fit the components(ML engineer and Data
Scientist)

Time

Agree

Actions

(b)

Figure 7. Comparative using standard and MLOps method. (a) Development and deployment
without MLOps platform. (b) Development and deployment with MLOps platform.

The architecture proposed in this paper (Figure 4) provides an ideal solution for this
problem, empowering each role to excel in their respective stages. The proposed method
delivers results in significantly shorter times compared to the traditional development
methodology described above. In this process, collaboration between the data scientist and
the ML engineer is crucial, defining the AI solution before development begins. Figure 7b il-
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lustrates an initial “agreement” step, outlining the pipeline components and their respective
inputs and outputs.

Once the data scientist is clear about their role and understands the ML engineer’s
procedure, they can start designing AI solutions using Jupyter notebooks provided by
Kubeflow. They also have the option to use Katib for hyperparameter tuning studies. Con-
currently, to expedite the process, the ML engineer begins designing pipeline components,
such as data collection and AI model deployment in KServe. Since this stage can also be
executed with Kubeflow’s Jupyter notebooks, the ML engineer can integrate preliminary
versions of the model into the full pipeline.

Upon the data scientist’s model design completion, the ML engineer integrates the
model, gathering the necessary weights for its pipeline implementation. During this phase,
the ML engineer can also adjust the model’s input protocol, incorporating data from HTTP
or MQTT. Thus, the ML engineer prepares the AI model for actual production deployment.

The outcome is a comprehensive and efficient pipeline covering the entire process of
development, testing, and deployment of an AI model.

Finally, the proposed architecture allows data scientists and ML engineers to track
the performance of the deployed model in real time by using the same platform. They can
collect relevant metrics, monitor the model’s behavior, and make iterative improvements
based on the feedback received. This feedback loop ensures continuous enhancement and
adaptation of the model to changing requirements.

3.3. Conducted Interviews

To assess the utility and effectiveness of the proposed platform, interviews were
conducted with six data scientists and five ML engineers who are involved in diverse
agricultural field activities. The interviewees possessed mid-level seniority and have been
working in the machine learning field for the last 3–5 years, giving a balanced perspective
of experience and current industry practices to the study. Therefore, it has been determined
that the responses provided by the respondents carry equal weight, as they all possess
the same level of expertise. In Section 3.3.1, the contents and structure of the survey
are presented. Afterwards, in Section 3.3.2, the results obtained during the surveys are
presented in a pointed format from 1 to 5. Additionally, metrics such as the mean and
standard deviation have also been extracted to statistically comprehend the results.

3.3.1. Contents and Structure of the Survey

To evaluate the usability and adaptability of the platform in general, the surveyed
professionals were invited to implement the platform in collaborative projects, aiming to
understand its adaptability and performance in a real-world setting. One of the first aspects
examined was the learning curve, measuring the time it took for professionals to become
comfortable using the platform’s tools and architecture in an actual project.

The choice to center this evaluation on interviews with AI professionals arises from
the intention to ensure that the proposed platform addresses tangible challenges in real-
world settings. The insights gained from these interviews offer a comprehensive view of
the platform’s capabilities. This emphasizes its effectiveness in closing communication
and operational gaps between data scientists and ML engineers [93]. This human-centric
evaluation methodology highlights the commitment to utility and adaptability.

Additionally, special attention was given to understanding how the platform would
impact the team dynamics. Factors such as collaboration and efficient task division were
evaluated to determine whether the platform facilitates or complicates these processes.
This is crucial, as any tool, no matter how advanced, must effectively integrate into a team’s
workflow to be genuinely useful.

Another area of focus was the interaction between different professional profiles.
The aim was to assess whether the platform simplifies communication and collaboration
between data scientists and ML engineers, who often need to coordinate closely but from
different technical perspectives.
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The study also explored the transition of projects from development to production.
This is key to understanding the platform’s versatility and its applicability at different
stages of a project’s lifecycle.

In terms of data management, the user experience with the platform’s storage system
(MinIO) was examined, especially concerning data handling and sharing. Lastly, the ease
with which knowledge of the platform can be transferred to new users was evaluated,
an aspect for the long-term sustainability of projects.

In summary, the evaluation aimed to show how well the platform meets the needs
and solves the challenges faced by both data scientists and ML engineers.

3.3.2. Metrics

For a better understanding of the results and system distribution, in addition to the
theoretical explanation, each interviewee was asked to provide a rating indicating the level
of difficulty, ranging from 1 (most negative) to 5 (most positive). Each aspect mentioned in
the previous section is considered one of the evaluated criteria.

These ratings have been accumulated and organized into tables, where the "criterion"
column displays the corresponding question, and the remaining table values store the
accumulative scores given by the respondents.

Furthermore, to provide more context and understand the statistical variation in these
values, it has been decided to calculate the mean and standard deviation. Additionally,
it has been assumed that the distribution is normal and confidence intervals have been
constructed around the mean, where 70% aligns with the criterion [x̄ − z ∗ σ, x̄ + z ∗ σ].

In Equations (1) and (2), the value n represents the number of elements in the dataset,
and xi represents the individual values in the dataset.

x̄ =
1
n

n

∑
i=1

xi (1)

σ =

√
1
n

n

∑
i=1

(xi − x̄)2 (2)

Following Table 1, the majority of the scores assigned to the data scientist team
are above 3. This suggests that the infrastructure is accessible to data scientist profiles.
As observed in Table 2, the statistics for all criteria, specifically the mean, are above 4 out of
5, with a standard deviation of ±1. This demonstrates that the evaluated individuals feel
comfortable and at ease with all the assessed criteria.

Table 1. Data scientist evaluations.

Data Scientists

Criterion 1 2 3 4 5

Learning Curve 0 0 1 3 2

Teamwork 0 0 0 3 3

Interaction with Other Profiles 0 0 1 3 2

Production 0 0 1 2 3

Data Management 0 0 2 2 2

Handover 0 0 0 2 4
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Table 2. Data scientist statistics.

Data Scientists x̄ σ x̄ − z ∗ σ x̄ + z ∗ σ

Learning Curve 4.16 0.68 3.47 4.85

Teamwork 4.5 0.50 4.00 5.00

Interaction with Other Profiles 4.16 0.68 3.47 4.85

Production 4.33 0.74 3.58 5.00

Data Management 4.0 0.81 3.18 4.81

Handover 4.66 0.47 4.19 5.12

In Table 3, the data reveals a noteworthy trend, with the majority of the scores awarded
to the Machine Learning engineer team surpassing the 3-point mark, affirming the accessi-
bility of the infrastructure for professionals specializing in Machine Learning. Based on
the statistical analysis presented in Table 4, each criterion, particularly the mean scores,
consistently register above the 4-point threshold out of 5. Accompanied by a standard
deviation range of ±1, these findings affirm the participants’ pronounced comfort and
proficiency across the spectrum of evaluated criteria.

Table 3. Machine Learning engineers’ evaluations.

Machine Learning Engineers

Criterion 1 2 3 4 5

Learning Curve 0 0 0 1 4

Teamwork 0 0 0 3 2

Interaction with Other Profiles 0 0 1 4 0

Production 0 0 0 5 0

Data Management 0 0 2 1 2

Handover 0 0 1 2 2

Table 4. Machine Learning engineers’ statistics.

Machine Learning Engineers x̄ σ x̄ − z ∗ σ x̄ + z ∗ σ

Learning Curve 4.80 0.40 4.40 5.20

Teamwork 4.40 0.49 3.91 4.89

Interaction with Other Profiles 3.80 0.40 3.40 4.20

Production 4.37 0.48 3.89 4.85

Data Management 4.00 0.89 3.10 4.89

Handover 4.20 0.74 3.45 4.94

4. Discussion

A summary of the key findings and conclusions extracted from the surveys conducted
with the professionals aforementioned is provided in Table 5. In the following, the contents
of the table are going to be analyzed in detail.

Both data scientists and ML engineers encountered a somehow steep initial learn-
ing curve when starting with MLOps tools, particularly with Kubeflow. However, this
challenge was generally overcome after an initial period, leading to a more intuitive and
user-friendly experience with the platform’s tools. It is important to mention that prior
knowledge in related technologies, such as Kubernetes, was cited as beneficial for easing
the learning process.
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Table 5. Summary of the answers to the survey.

Aspect Data Scientists Machine Learning Engineers

Learning Curve Initial learning curve is steep, especially with Kubeflow. Initial learning curve with Kubeflow,
Becomes intuitive after initial phase. eased by prior knowledge in Kubernetes.

Teamwork Task division is challenging due to diverse technologies. Facilitates collaboration but requires
Some level of simultaneous collaboration is possible. well-organized team and clear methodologies.

Interaction with Other Profiles Facilitates interaction but requires initial organization. Smooth interaction with Data Scientists, allows
for parallel work streams.

Production Simplified by tools such as MLFlow and KServe. Considered to streamline the process.

Data Management Centralized data storage in MinIO is beneficial. Centralized data storage in MinIO allows for easy
sharing and customization.

Handover and Data Sharing Time-consuming if the other party is not familiar Straightforward if both parties
with the technologies. Otherwise, straightforward. are familiar with the platform.

In terms of collaboration and teamwork, the platform was universally seen as a facili-
tator. However, this benefit was not without its conditions. Both roles emphasized the need
for a well-organized team and clear methodologies to fully leverage the platform’s capabili-
ties. The structure of the platform allows for the division of tasks and parallel work streams,
which can speed up project timelines and make the workflow more efficient. However, this
requires the team to be well coordinated and possibly adhere to agile methodologies.

Data management was another common area of agreement. The centralized data
storage capabilities provided by MinIO were highly valued by both data scientists and ML
engineers. This feature not only simplifies data management but also enhances collabora-
tion by ensuring that all team members have access to the latest versions of datasets.

When it comes to the handover of projects and the sharing of resources, the experiences
were generally positive. The platform’s structure and the use of code for defining pipelines
make it easier to transfer work between team members. However, the time required for
handover could increase if the incoming member is not familiar with the platform’s tech-
nologies. Despite this, once the handover is complete, sharing data, models, and pipelines
within the platform is relatively straightforward.

In conclusion, both data scientists and ML engineers find significant value in using
MLOps tools, despite facing different challenges and benefits. The common themes that
emerged from the study include the importance of documentation, the initial learning
curve, and the benefits of centralized data storage.

5. Conclusions and Future Lines

In this study, the development of AI models and their deployment in real productive
systems using traditional methods has proven to be complex. To address this challenge,
two solutions have been proposed. First, a development method facilitates the natural
development and deployment of models. Second, an MLOps-oriented architecture de-
signed for the agricultural sector incorporates specific protocols (MQTT) and open-source
technologies to develop and execute AI models, allowing for seamless communication with
agricultural devices.

This conclusions section summarizes the primary benefits and insights of the platform,
highlighting its significance and potential impact.

• The platform provides access to high-performance infrastructure, enabling efficient
utilization of computational power. This capability empowers users to tackle complex
tasks and handle large datasets without being constrained by their local
hardware limitations.

• The platform serves as a centralized entrypoint which enhances communication and
collaboration among data scientists, ML engineers, and other stakeholders, such as
domain experts and project managers. This unified platform facilitates the seamless
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sharing of code, documentation, and project updates, promoting efficient code review,
feedback, and iteration cycles.

• The platform takes care of role and user management, eliminating the need for users to
handle multiple credentials for various tools and services. This centralized approach
simplifies user onboarding, access control, and overall security.

• The platform seamlessly manages the deployment and monitoring of ML mod-
els. This allows for timely issue detection and facilitates proactive maintenance
and improvements.

• The platform incorporates centralized storage, streamlining the collaboration and shar-
ing of datasets and ML artifacts. This centralized storage enables users to efficiently
manage and access shared data, thereby accelerating the development process.

• Feedback from data scientists and ML engineers who have used the platform indicates
its value for enhancing collaboration. However, they also mention that the initial steps
can be somewhat challenging for new users. Despite this, they also highlight the need
for structured and common methodologies to better organize resources within the
platform and streamline day-to-day operations.

• The platform is tailored for agriculture, efficiently connecting with numerous sensors,
compatible with MQTT, and built on adaptable open-source technologies, making
it an ideal choice for diverse farming needs. The platform has specifically been
designed considering the farmer’s needs, building it in such a way that the adoption
of this architecture would only require a minimum hardware infrastructure to deploy
the system.

• While this platform was originally developed for an agricultural environment, its
modular and adaptable architecture allows for its application in diverse fields. With ap-
propriate modifications, the platform could be extrapolated to cater to the specific
needs and challenges of other sectors.

As with any evolving technology, the platform presents opportunities for refinement
and expansion. Considering the shifting nature of a brand-new paradigm such as MLOps
and the feedback gathered from the user community, certain areas have been identified for
further exploration and enhancement.

• Improving User Onboarding: Given the feedback regarding the initial challenges
faced by new users, it becomes imperative to make the learning curve smoother.
Interactive tutorials, context-sensitive help sections, and even AI-guided walkthroughs
are potential solutions to better assist new users as they navigate and familiarize
themselves with the platform.

• Model Monitoring: While the platform handles the entire lifecycle of ML models
proficiently, there is a clear gap in terms of continuous model monitoring in a produc-
tive environment. The immediate next step, thus, is integrating well-established tools
such as Grafana [95] and Prometheus [96], since they could provide real-time insights,
performance metrics, and anomaly detection for deployed models.
Although the platform efficiently manages the lifecycle of ML models, it lacks continu-
ous model monitoring in a production environment. To address this, integrating tools
like Grafana [95] and Prometheus [96] is essential for offering real-time insights and
performance metrics, including anomaly detection for deployed models.

• More experimentation: The aim is to engage more data scientists and ML engineers
on the platform to maximize its memory and computing capacities. This entails
encouraging experts to perform resource-intensive tasks, challenging the system’s
ability to handle extensive data processing and complex algorithms. By pushing the
platform to its limits, it can showcase its scalability and effectiveness for demanding
data science and machine learning tasks.
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